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ERROR PERFORMANCE OF DIRECT SEQUENCE SPREAD
SPECTRUM SYSTEMS ON NONSELECTIVE

GENERALIZED RAYLEIGH FADING CHANNELS

Robert Charles Hanlon, Ph.D., Major, USAF
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1980

Abstract

The error performance of direct-sequence spread spectrum multiple-access

communications systems on nonselective fading channels is investigated. The

channels considered are those for which the fading intensity is slow,

nonselective, and exhibit a generalized Rayleigh distribution. The generalized

Rayleigh distribution encompasses the important special cases of Rician

(specular plus Rayleigh) fading, Nakagami m-distributed fading, and Rayleigh

fading. Results are obtained for the special cases of a single cochannel

interferer without additive noise and multiple independent cochannel

interferers with additive white Gaussian noise. The results are developed as a

series expansion in the moments of the cross-correlation between the spreading

codes (single interferer) or as a series expansion in the powers of the second

moment of the code cross-correlation (multiple interferers). To develop simple

estimates of the probability of error, empirical estimates of the low-order

cross-correlation moments of the spreading codes (taken to be Gold codes) are

developed from a generalized gamma density approximation based on the

cross-correlation moments for both Gold codes and random codes. Numerical

results for the probability of error are obtained with these estimates and

compared with the results based on exact moments developed from the code

cross-correlation probability density. (103 pages).
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Chapter 1

INTRODUCTION

1.1. ra e Communications Stem

A spread spectrum communications system is characterized by the use of much

larger radio frequency bandwidths than required by the bandwidth of the

baseband information signal [Dixon, 1976a], [Glazer, 1973]. By effective use

of this additional bandwidth, spread spectrum systems develop several inherent

advantages over systems which use conventional, relatively narrowband

techniques. These advantages include [Cahn, 1973), [Dixon, 1976a], [Glazer,

1973]: (1) enhanced resistance to interference, (2) capability for

multiple-access within a common frequency spectrum, (3) ability to operate

effectively within a frequency spectrum simultaneously being occupied by

conventionally modulated signals, (4) low detectibility by unintended

receivers, and (5) message privacy. These benefits are interrelated and arise

due to the methods employed to spread the bandwidth prior to transmission and

compress (despread) the bandwidth after reception by the intended recipient.

However, these techniques also give rise to two principal disadvantages:

relatively complicated transmitting and receiving equipment, and conflict with

current frequency allocation and assignment procedures.

There are several methods which are commonly used to spread the information

signal bandwidth. These include direct sequence code modulation, frequency

hopping, time hopping, swept frequency ("chirp") modulation, and hybrid
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combinations of these methods. The basic underlying principle of spread

spectrum systems is that the intended recipient knows both the technique

employed and its specific implementation. The intended recipient is then able

to use this knowledge to invert the spreading process, thereby despreading the

received signal to reproduce the narrowband information signal. To clarify

these concepts, direct sequence modulation is examined in detail. Further, the

scope of the remainder of this paper is restricted to this form of spread

spectrum modulation.

1.2. Direct SequeneeC,9..Mdultio

In a direct sequence (DS) code modulation system, the information signal

(digital or analog) is multiplied by a spreading code sequence whose effective

bandwidth is much greater than that of the information signal. This

multiplication in the time domain is equivalent to convolution in the frequency

domain. If the baseband information signal is nominally bandlimited to the

interval (-Bb, Bb) and the spreading code sequence is nominally bandlimited to

the interval (-Bm, B m), then the product signal in general occupies the

frequency interval (-B b-B m, B b+ B m). Since in spread spectrum systems, Bm is

much greater than Bb, then the product signal bandwidth is approximately that

of the spreading code sequence. For high rate spreading codes, the transmitted

power spectral density can be made quite low. As a result of the low power

spectral density, interference effects on conventionally modulated systems

operating simultaneously over some small portion of the spread spectrum

bandwidth can be minimal, and the detectibility of the spread spectrum



transmission by conventional receivers is significantly reduced. Low

detectibility enhances message privacy and traffic flow security (precludes

knowledge of message traffic volume) and compounds problems in radio direction

finding.

For the purposes of this discussion, it is assumed that the information

signal is a binary digital signal, b(t), and the spreading code sequence

(sometimes referred to as a key sequence or signature sequence) is also a

binary digital signal, a(t), where both signals can take the value of ei.her

plus or minus one during their respective bit intervals. The bit interval of

the information signal is Td  and the bit interval for the spreadinq code

sequence is Tc, where Td is much greater than Tc  to provide the .equired

greater bandwidth for the spreading code. A bit of the spreading code is

referred to as a chip to distinguish it from an information signal bit,

consequently, Tc  is referred to as the chip interval and Td as the bit

interval. The spreading code is repetitive with period LT c, where L is the

number of chips per period, and is referred to as the code length. It is

assumed that the spreading code is synchronized to the information signal such

that one period of the spreading code occurs during each bit, i.e.,

T = LT . (1.1)

d _
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The product signal is [a(t)b(t)]. If the product signal is multiplied by

a(t), we have [a 2(t)b(t)]. Since a(t) is either plus or minus one, a 2(t) is

identically one, and [a 2(t)b(t)] is equal to b(t), which is the original

information signal. Therefore, the despreading operation is identical to the

spreading operation, that is, multiplication of a signal by the spreading code.

Clearly, the receiver requires prior knowledge of the spreading code. Hence,

the spreading code must be deterministic. However, if the code length is

fairly long, the spreading code appears to be random and is often referred to

as a pseudorandom code sequence. The receiver must not only know the code

sequence, but must also generate the sequence in-phase with the sequence which

has been applied to the information signal. In a system employing radio

propagation, a pure synchronous system is generally not possible. This is the

reason for using a periodic sequence. The periodic nature of the code sequence

enables the receiver to detect the phase and to synchronize to this phase.

If signals other than the intended spread spectrum signal are received,

multiplication by the spreading code in the receiver spreads each of these

undesired signals to at least the baidwidth of the spreading code. Narrowband

filtering after the multiplication passes the despread intended signal while

rejecting most of the power of unintended signals. This can be seen to be a

correlation receiver where the correlation is against the spreading code of the

intended signal. For conventional narrowband signals, their power spectral

densities are reduced by a factor of approximately (Bb/Bm)<<l by the receiver's

despreading process. Even if the interference has the same bandwidth as the

spread spectrum signal, its power spectral density would be reduced by

approximately (B m/2B )1/2, that is, 3 dB. Further, a signal whose bandwidth
m m
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was on the order of the spread spectrum bandwidth would generally have an

inherently low power spectral density. To help minimize noise and interference

effects, a wideband filter can be used on the received signal prior to

despreading to eliminate undesired components outside the spread spectrum

bandwidth. It has also been shown that notch filters can be used to eliminate

narrowband interference wihout undue distortion of the spread spectrum signal

[Sussman and Ferrari, 1976).

1.3. Direct eauec. Multiple-Access Communications

As indicated, the despreading process is fairly effective against undesired

signals. This feature can be used to obtain multiple-access capability by

assigning each of the various system users a unique spreading code. Provided

that the codes used do not exhibit a high degree of cross-correlation, then the

intended receiver is able to effectively reject the signals from the other

users. Use of codes to implement multiple-access communications is referred to

as code division multiplexing and offers an attractive alternative to

conventional time and frequency division multiplexing. The presence of the

other users in code division multiplexing results in an inherent cochannel

interference. To help minimize the cross-correlation between the assigned

spreading codes and thereby reduce the cochannel interference, special codes

such as Gold codes are generally used which are known to have good

cross-correlation properties [Di .., 1976a], [Gold, 1964], [Pursley, 1976]. It

should be noted that when Gold codes or other linear codes are used, they do

not provide message security in the sense of cryptographic codes [Dixon,
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1976a], (Scholtz, 1977], [Ristenbatt and Daws, 1977), but do provide a degree

of message privacy.

Figure 1 shows a basic direct sequence spread spectrum multiple-access

(DS/SSMA) communications system (Gardner and Orr, 1979], [Orr, 1977]. The

receiver is assumed to be frequency, phase and code synchronized to the

intended signal (channel 1). Although acquisition and maintenance of

synchronization is a major aspect of spread spectrum communications systems, it

is beyond the scope of this paper and is assumed to be perfect in all

subsequent analyses. Although the receiver is assumed to be synchronized to

channel 1, the transmitters are operating asynchronously relative to each

other.

In analyzing the performance of a communications system, the channel over

which the signals propagate must be modeled to account for all significant

sources of signal degradation. Along with the presence of additive random

noise, it is relatively common in systems utilizing radio propagation to

encounter random multiplicative signal distortion, that is, continuously time

varying received signal amplitudes. This random multiplicative signal

distortion is generally referred to as nonselective fading. Fading generally

arises out of conditions which give rise to multipath propagation (e.g.,

ionospheric reflection or tropospheric scatter propagation) where the multiple

paths are of varying lengths and nonstationary in nature (e.g., dynamic
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inhomogeneities in scattering volume). Nonselective fading implies that the

fading effects do not change appreciably with frequency over the bandwidth of

interest. In addition to assuming that the fading is nonselective, it is also

assumed that the fading is slow , that is, the fading intensity does not change

appreciably over time periods on the order of the data bit interval. For the

purposes of this analysis, the additive random noise is assumed to be

independent zero-mean white Gaussian noise (uniform two-sided power spectral

density of n0/2 with normally distributed amplitude). Figure 2 depicts the

channel model [Gardner and Orr, 1979).

The fading intensities, fi(t), are assumed to be generalized Rayleigh

variates (Appendix B). The generalized Rayleigh distribution encompasses a

wide class of distributions which are useful in the study of communications

over fading channels. In particular, the generalized Rayleigh distribution has

as special cases: the Rician (specular plus Rayleigh), Nakagami

(m-distributed), and Rayleigh distributions. Each of these distributions has

been extensively utilized for modeling fading channels.

1.5. Ae Eion

For the spread spectrum multiple-access communications system depicted in

Fig. 1, the transmitted signal on the i-th channel can be represented as an

amplitude modulated carrier, that is, [Gardner and Orr, 1979)

Si(t) = (2PTi) 1/2 ai(t) bi(t) cos Wct (1.2)
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where PTi is the transmitted power, ai(t) is the spreading code, b it) is the

information signal, and w c is the common carrier frequency. The channel model

as illustrated in Fig. 2 introduces nonselective random fading and random path

delays on each signal and random additive noise. The total received signal for

the case of M users is then [Gardner and Orr, 1979)

M 1/

r(t) = n('t) + M (2Pi)/2 f (t-Ti) ai(t-T i)
i=1

bi(t-T cos (c t + 6i ) (1.3)

where the Pi are the effective received powers in the absence of fading, the

f. are the random fading intensities, the Ti are random time delays, and the

9" are random phase angles. The fo, ri, and 0. are random processes; however,

the time dependence is not explicitly shown to simplify the notation. The T.1

are assumed to be independent and identically distributed (i.i.d.) with

uniform distributions on the interval (0, T ) The 0. are assumed to be
d1

i.i.d. with uniform distributions on the interval (0, 2w). The assumption that

the 0i are uniform implies the transmitters are operating asynchronously (as

previously mentioned) and that the transmitters' relative phase drifts

overshadow their phase variations due to fading effects.

For coherent reception and under the stated assumption that the intended

receiver is perfectly synchronized (frequency, phase, and spreading code) to

the first signal, detection is accomplished by multiplying the received signal

by [a1 (t-T I) cos(Wc t+.1 )] and integrating over a data bit period, that is,
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correlating the received signal with the spreading code of the intended signal.

Since coherent detection is assumed, we can set T equal to zero, G1 equal to

zero, and restrict our interest to the data bit received during the interval

(0, Td) without loss of generality. The carrier frequency is much greater than

T I
, hence the contribution from the double frequency components is negligible

and the output of the correlation integrator is

R b S I N (1.4)

where the intended signal component is

S (P1 /2)1/2 fd dt ft) (1.5)
0

the cochannel interference component is

2T d
I Z I(Pi/2)1 /2 f dt a1(t)ai(t-Ti)bi(t Ti)fi(t-Ti)cos ()i  (1.6)

i:2 0

and the additive noise component is

Td

N d dt a (t) n(t) cos t (1.7)
0 c

Under the assumption of slow fading, f1, fi, and i are relatively constant

over the integration interval. We can then write
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S (P T 2 /2)1/2 f (1.8)
1 d 1

and

N

I 2 (PiTd/2)1  a n fi cose I  (1.9)i=f2 nii

where a is the normalized cross-correlation between codes a and ai  in thenli

presence of data, that is,

Td

= Td f dt a1(t)ai(t-T )b (t-Ti )  (1.10)
i 0

For equally likely data bits, the detection threshold is zero due to symmetry,

and the probability of error is

Pr{E} = - [Pr{S+I+N<Olb=1) + Pr{-S+I+N>Olbl:-}]) (1.11)

By letting (Z = I+N) and by noting that the probability density of Z is

symetric, we obtain for the average probability of error

Pr{E) f fdw f dv p 2(V,W) 
1 Pr{ 1Z > s) (1.12)

0 0 2

where psz is the joint probability density of the random processes S and Z.
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The expression for the probability of error given by Eq.(1.12) appears

quite simple; however, determination of the joint probability density psz and

subsequent evaluation of the integrals is in general quite complicated due to

the numerous random processes involved. Three general approaches have been

used to evaluate or approximate the system performance. The first involves

determination of the equivalent signal-to-noise ratio (SNR) resulting from the

cochannel interference and additive noise, that is, [Gardner and Orr, 1979],

[Pursley, 1977)

SNR = <S2 > / Var(Z) . (1.13)

The equivalent SNR can then be taken as an indirect measure of the system

performance (bit error rate) or an estimate of the probability of error can be

developed by using the equivalent SNR in the well-known error expression for

signals in Gaussian noise

= erfc[(SNR/2)1/2  (1.14)

where erfc(x) is the complementary error function. The second approach

involves bounding the error probability by utilizing the theory of moment

spaces [Borth, 1979], [Yao, 1976 and 1977]. The third approach, and that

addressed in the remainder of this paper, is to develop a series expansion for

the error rate in the cross-correlation moments of the spreading codes [Gardner

and Orr, 1979], (Hanlon and Gardner, 1979 and 1980]. Provided that the series

expansion converges rapidly, the first few terms provide an accurate estimate
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of the average error rate.

1.6. OutlineDLtheThesis

As indicated in the preceding section, the approach used in this paper to

evaluate the error performance is the use of series expansions of the error

rate in the cross-correlation moments of the spreading codes. To utilize this

approach, we require access to the code cross-correlation moments. This

problem is addressed first.

As seen later, in general, evaluation of the cross-correlation moments

requires knowledge of the cross-correlation probability density. Obtaining the

probability density can be very difficult, and to circumvent this problem,

accurate estimates of the moments are desired. In Chapter 2, an algorithm is

developed which can be used to evaluate the probability density from the joint

probability mass function for adjacent cross-correlation values for integral

offset. This algorithm is used to evaluate the moments for the

cross-correlation for a set of Gold codes of length 31 and a subset of Gold

codes of length 127. Gold codes are used throughout the analysis as

representative spreading codes for illustration. These moments and the moments

of random codes of the same length (Appendix D) are used to develop an

empirical estimate for the low-order cross-correlation moments for Gold codes

based on modeling the cross-correlation distribution by a generalized gamma

distribution. The empirical estimates developed from the gamma density model

are used in the estimates of the probability of error developed in Chapter 3.
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The error performance analysis in Chapter 3 addresses two special cases.

First, the case of a single cochannel interferer in the absence of additive

noise. This case represents a performance bound for multiple-access

communications, that is, it represents an irreducible error rate in the

presence of cochannel interference and fading for arbitrarily large signal-

to-Gaussian-noise ratios. The second case addressed is for multiple

independent interferers with additive Gaussian noise. This case also gives

rise to an irreducible error rate for arbitrarily large signal-to-Gaussian-

noise ratios. As part of the analysis, simple single-term estimates for these

irreducible error rates are developed and evaluated.

In both cases mentioned above, the analytical results are based on the

developments given in Appendix B for generalized Rayleigh variates. In

particular, the probability of error is expressible in terms of the expressions

for the probability that one generalized Rayleigh variate exceeds another for

either independent or correlated variates.

Chapter 4 summarizes, provides conclusions developed from the results

presented earlier, and gives recommendations for further study in this area.

Throughout the paper, reference is made to mathematical functions and

formulas which are listed in Appendix A.
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Chapter 2

CROSS-CORRELATION BETWEEN SPREADING CODES

2.1. Cross-Correlation jn _= Presence of. Data

In a direct sequence spread spectrum communications system, multiple-access

capability within a common frequency spectrum is obtained by assigning each

system user a unique periodic spreading code. The presence of multiple users

within a shared frequency spectrum results in an inherent cochannel

interference. However, if the cross-correlation between the spreading codes is

kept low, then the cochannel interference effects are relatively minimized

(subject to constraints such as number and proximity of other users) and the

likelihood of reliable communications is enhanced.

For direct sequence multiple-access systems, the output of the correlation

receiver, which is assumed to be synchronized to the intended signal, contains

cochannel interference terms of the form [Gardner and Orr, 1979], [Pursley,

1977)

Td

L Td1 .f dt a (t-4 ) ai(t--) bi(t-z) (2.1)
d 0 1 j i ii i

where a is the spreading code on the intended signal, ai and bi are the

spreading code and data bit respectively on the i-th interfering user's signal,

and set the phase of the spreading codes relative to their data bits, L
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is the length of the spreading codes (number of chips in one period of the

code), Td is the data bit interval (assumed to be identical for all users), and

Ti is the relative timing offset in the receiver between the intended user's

and interfering user's signals. This timing offset is due to asynchronism

between transmitters as well as differing propagation delays over the channel.

The Ti are assumed to be uniformly distributed on the interval (O,Td). Both

the spreading codes and data signal can assume values of +1 or -1. The

spreading codes have a period of L chips where each chip is of duration T .c

This period is assumed to correspond to one data bit interval.

The integral in Eq.(2.1) is similar to the cross-correlation between the

two spreading codes except for the presence of the interfering signal's data

bit. Consequently, it is referred to as the cross-correlation in the presence

of data and designated 8. The factor bi considerably complicates analysis of

such forms. Although special sets of spreading codes which have good

cross-correlation properties (typically meaning bounded by some value much less

than L) are generally used, the presence of the data bit significantly alters

these properties [Massey and Uhran, 1975]. For instance, the magnitude of

cross-correlation values for Gold codes (Gold, 19641 of length 31 never exceeds

9. However, with data preseit, the magnitude of the integral in Eq.(2.1) for

the same codes can be as large as 21 [Orr, 1977), [Massey and Uhran, 1975).

In evaluating the multiple-access system performance, two limiting cases

are of particular interest: the case of a single interferer and the case where

there are several simultaneous interferers. When referring to a single

interferer, this does not imply that there is only one other system user, but
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rather that only one of the other system users is simultaneously transmitting

(this case would typically occur if the various users each had a low

transmission duty cycle). Likewise, in the case of several interferers, say

M-1, there are in general more system users than M. However, there are only M

system users (M-1 interferers) simultaneously transmitting. In the case of

several interferers, the composite interference is a sum of integrals of the

form given by Eq.(2.1). Since both the data sequences and timing offsets are

independent, the interference in the multiple interferer case tends toward a

Gaussian random process. In either case, the probability of error is a

function of 6. To exactly evaluate the error rate, the probability density of

8 would be needed. However, as shown later, determination of the probability

density can be quite complicated. For a single interferer, the problem of

determining the probability density can sometimes be circumvented by expanding

the conditional probability of error given 8 in a series involving the powers

of (/L). An estimate of the error rate can then be obtained by truncating the

series and taking the expectation. This approach has been shown to be quite

useful for estimating error rates of direct sequence systems operating over

nonselective slow fading channels [Gardner and Orr, 1979), [Hanlon and Gardner,

1979 and 1980). For the case of multiple interferers, if we approximate the

interference by a Gaussian random process, we can often restrict our interest

to determination of the second moment of the cross-correlation. Therefore, in

many cases the probability of error can be accurately estimated by determining

the first few moments of 8 or, more practically, an estimate of these moments.
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For a given multiple-access communications system, the code that is

designated a. depends on which user is taken to be the intended user for the

analysis. Likewise, ai depends on the signal whose contribution to the

cochannel interference is to be determined. In general, it could be any of the

other users. From a systems viewpoint, we are concerned with the performance

of the system over all possible combinations of users. Further, the codes

assigned to any or all users might be occasionally changed due to operational

considerations (e.g., use of dynamic code assignments to enhance the long-term

privacy or antijam characteristics). Consequently, exact analysis for a

particular pair of codes is of limited utility, and we are concerned primarily

with the expected performance (average error rate) over the entire set of

permitted codes. The analysis then addresses the average over all possible

users (i.e., a and ai are assumed to be equally likely to be any of the

possible code sequences, where i is not equal to j). This, coupled with the

presence of the randomizing effects due to the interfering signal's data

sequence and the relative timing offsets (Ti ), leads to the conjecture that the

low-order moments of the average cross-correlation in the presence of data is

close to those for random code sequences of the same length (L chips per data

bit). This conjecture is heuristically tested by example.

In Section 2.2 an algorithm for calculating the probability density for the

code cross-correlation in the presence of data is developed. Although our

immediate interest is in determining the average over all possible users

(entire code set), the algorithm can be directly applied to any subset of the

codes if, in a specific application, a priori considerations warrant such a

restriction. This probability density can then be used to obtain exact moments
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for whatever code set or subset is under consideration. The probability

density is used to determine the moments of the code cross-correlation in the

presence of data for a set of Gold codes of length 31 and for a subset of Gold

codes of length 127.

In Section 2.3 two approaches for estimating the low-order Gold code

moments are addressed. The first method directly estimates the low-order

moments by the corresponding moments for random code sequences of length L

(Appendix D). The second method empirically refines these estimates by using

the moments of a generalized gamma density for which the parameters are chosen

to provide close agreement with the Gold code moments.

2.2. Probalty Densit

In Eq.(2.1), the product ajaib i is not periodic due to the presence of the

factor bi . However, since the correlator is restricted to the interval

(0,Td), the integrand can be considered to be a sample of the product of

periodic codes defined respectively by a and the product aib i on the

integration interval. The cross-correlation between a pair of periodic

synchronous codes is given by the number of agreements minus the number of

disagreements when the codes are compared chip-by-chip over one period of the

codes (Gold, 1964], [Dixon, 1976a]. For the codes to be synchronous, we

require the codes to have the same period and the same chip intervals and for

the chip intervals to coincide in time. For a pair of codes of length L

(period of L chips), we have
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c = 2A - L (2.2)

where c is the cross-correlation value and A is the number of agreements.

Hence, c is even for L even and odd for L odd (c mod2 = L mod2) and is

restricted to the closed interval [-L, L].

For a and the product aibi to be synchronous as defined above, we must

restrict Ti to be of the form

Ti = n Tc  (2.3)

where n is equally likely to take any integer value on the closed interval

[0, L-1). We designate the random variable for the cross-correlation for

integral offset by c. The probability mass function for c is nonzero only for

c = m where m satisfies -L < m 5 L and m mod2 = L mod2. For an arbitrary timing

offset, Ti can be represented as

Ti = (n + x)Tc  (2.4)

where again n is equally likely to take any integer value on the closed

interval (0, L-1] and x is uniformly distributed on the interval (0,1). In

this case, the code cross-correlation can take noninteger values due to partial

agreements and disagreements during the chip intervals. The case of arbitrary

timing offsets (to include nonintegral offsets) is more realistic since, in

general, it is neither desirable nor feasible to impose any synchronization on
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the system, due to the complexity and cost which would be involved. Let c0 be

a random variable corresponding to the value of the cross-correlation when

x = 0, and c1  be the value when x = 1. For given values of c0 and cl, the

cross-correlation varies linearly with x as each chip comparison transitions

from its value for c0 to its value for c. Consequently, the cross-correlation

for arbitrary offset, designated 8, is given by

8 = (1 - x)c0 + xc . (2.5)

When c = c, 6 takes the value c0.for all values of x. Hence, the probability

of 8 taking the value k is equal to the probability that both c0 and c1 take

the value k, that is,

Pr{8 = k} = Pr{c 0 = k, c = k) = Pk (2.6)0 1 k,k

where P' is the joint probability mass function for the ordered pair (c0 = r,r~s

c1 = s). To obtain the density for 8, we first obtain the conditional density

of 8 given c0 and c,. Since x is uniform on (0,1), we have

Ic1 - Co- , min(coc 1 ) < X < max(cO,c)

P8(0 1cocl) =(2.7)

0 , otherwise

The density is then obtained by taking the expectation of the conditional
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density. Since the conditional density is constant, the density of 8 is

piecewise constant with discontinuities occurring whenever X = k for -L < k < L

and k mod2 = L mod2. For X on the open interval (k,k+2) where k is even for L

even and odd for L odd, we have (r mod2 - s mod2 = L mod2)

k L -1 L k -1aW = I (s-r) "I Pr's + I I r-s) - P;' (2.8)r=-L s=k+2 r,s r (-ssP
(s-r s~2 r=k+2 s=-L

where any open sums are to be interpreted as zero. This equation can then be

manipulated into the form [Hanlon, Peterson, and Gardner, 1980]

p =(L+k)/2 L (s-r)-1 (2.9)

O s 1 2r-L,2s-L
r r0 s:(L~k+2)/2

where (k < X < k+2, -L < k 5 L-2, k mod2 = L mod2) and

rPs Pr . (2.10)Pr,s 2 (r,s +sP,r

It should be noted that for the joint probability mass function P' the order

of r and s is important since r designates the value of the cross-correlation

for x = 0 (c0 ) and s designates the value for x = 1 (c1 ), whereas, in Eq.(2.9),

the result is independent of the order since P is the average of P' andrs r,s
P' . Consequently, P can be considered to be the joint probability mass

sr rs
function of c o and c I without regard to order.
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The relations shown in Eq.(2.6) and Eq.(2.9) demonstrate that the

distribution of 8 is dependent only on the joint probability mass function for

adjacent cross-correlation values under the condition of integral offset. This

significantly reduces the complexity of calculating the density for arbitrary

offset between the codes. For example, consider the case of random binary

symmetric codes, that is, codes for which the value of each chip is equally

likely to be either +1 or -1 and for which each chip is statistically

independent of all other chips. In this case, for r mod2 = s mod2 L mod2,

Pr,s rL .rr (2.11)

and from Eq.(2.6) and Eq.(2.9), we have for the mass function

2-2L rL 2
Pr{8 = (2.12)

where (-L . m j L, m mod2 = L mod2), and for the density

2L(L+k)/2 L rL L2- 2 (s-r)- I  (2.13)

r=O s=(L+k+2)/2 (S)

where (k < < k 2, -L S k S. L-2, k mod2 = L mod2). Note that in the case of

random codes, the magnitude of the cross-correlation can be as large as L, the

code length (number of chips per data bit).
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For a general set of periodic codes, determination of the probability

density is more complicated. Starting with Eq.(2.1) and noting that the data

bit on the interfering signal has a constant value, say bi, on the interval

(0,ti) and transitions to a constant value, say bi, for the remainder of the

integration interval, we have

c = bi R ji(T ) + b R ji(T) (2.14)

where Rji and Rji are partial cross-correlation functions defined by [Pursley,

1977)

Ti

R (r) = T-1 f dt a (t-$) a (t- -T) (2.15)
jiii c 0 i i

Td

Rji(Ti) Tc I f dt a (t-0j) ai(t-i-T1 i) . (2.16)
T 
i

Since (bi, bi) can assume any of the four values (+,+1) with equal likelihood,

then for a given offset and phase, c takes on the four values

c = +R ji(T) + Rji(Ti)] (2.17)

with equal likelihood. It is readily shown by a change of variables (see also

Massey and Uhran [1975)) that these four values are the same as
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c [R ij(Td-) RCij(Td-Ti)] (2.18)

Then, for a given set of phases for a. and ai, varying the timing offset over

all possible integral values generates the same values for the

cross-correlation, probability mass function, and probability density whether

a is taken to be the intended signal's code sequence and ai is taken to be the

interfering signal's code sequence or vice versa.

Note, since the integration interval implied in Eq.(2.14) is broken, that

the set of values for the partial cross-correlation functions under varying

integral offsets changes if either code sequence is circularly shifted by q

chips where q lies on the interval [O,L-1]. This circular shift is equivalent

to the code sequence being started with a different phase relative to its data

bit sequence. In principle, we could select the phase for each code to

minimize the average cross-correlation moments or average bit error rate.

However, for long codes this is impractical, and we do not assume any

particular set of phases for the codes, that is, the relative phase is assumed

to take on any of the L possible values with equal likelihood. We can

determine the values of PI by tabulating the relative frequency of ther,s

ordered pair (c0,c1 ), where c0 corresponds to Ti : nTc and c corresponds to

T i = (n+1)T c, under exhaustive enumeration of the partial cross-correlation

functions over all values of n on the interval [0,L-1]; over all code pairs

(ajai), for i greater than J; and over all phases of the codes. The symmetry

of Eq.(2.17) and Eq.(2.18) obviates consideration of the cases where i is less

than J. P is then the average of P' and P' . The values of P are thenrs rs s,r" r,s

used in Eq.(2.6) and Eq.(2.9) to obtain the probability density.
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For the case of Gold codes of length L, there are (L+2) distinct code

sequences which can be generated by a linear shift register with 2m stages,

where L = (2m - 1). For example, there are 33 possible codes of length 31

which can be generated by a 10 stage shift register. Let a(0. represent the3

nominal zero phase of code a relative to its data bit and a k ) represent a
(0)

phase shift of k chips relative to a 0 . From the closure property of linear

shift registers (the modulo 2 sum of two sequences from a linear shift register

is itself a sequence from that shift register)[Gold, 1964] and the isomorphism

between the additive group {0,1} and the multiplicative group 1-1,1}, it is

readily shown that the chip-by-chip product a() am) for a not equal to

(m) (0) (s)ai can always be resolved as the product of a and a that is, the
p r

product of the nominal zero phase of one of the Gold codes and some other

member of the set of Gold codes. The values for P generated by the code
r,s

a(k)aCm)
combination a a then replicate the set of values generated by the code

(0) CS)combination a p a rs . Consequently, we only consider phase shifts of thep r

interfering signal's code sequence rather than phase shifting both the desired

and interfering signals' code sequences.

Calculation of Pr,s for Gold codes then involves (L+2 code pairs, L

different values for the relative timing offset, L different values for the

relative phase of ai, and 4 different data bit combinations. Hence there are

[2L (L+1)(L+2)] values for the cross-correlation. Due to symmetry, only half of

these values need be calculated. Consequently, the number of cross-correlation

values calculated is proportional to the fourth power of the code length.

Figure 3 illustrates the results for a set of Gold codes of length 31 (m=5).

Without the presence of the data bits, the cross-correlation between Gold codes
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of length L is three-valued: (-2L(m+2)/21 - 1, -1, 2L(m+2)/2i - 1) [Gold,

1964]. Figure 3a shows these three values (-9, -1, 7) and the average relative

frequency with which they occur for integral offsets for the Gold codes of

length 31. The results shown in Fig. 3b illustrate the effects of data on the

cross-correlation values for integral offset. Note that the probability mass

function is symmetric and the maximum magnitude of the cross-correlation (21)

extends considerably beyond the corresponding value without data present (9).

Figure 3c shows the average cross-correlation probability density and

probability mass function for arbitrary offset. As mentioned in the

development for arbitrary code sets, the density is piecewise constant.

2.3. Moments

Given the probability density, it is a simple matter to calculate the

moments of the cross-correlation. However, if we desire the average

performance, the number of code correlations needed to compute the density

rapidly becomes prohibitive as the code length increases. Hence, we are

motivated to develop an approximation to the average error rate which can be

evaluated without use of the probability density. One approach is to expand the

conditional probability of error given 8 in a power series of the form

Pr{ET8I = Z Ak (8/L)2k  (2.19)
k

where the Ak are the coefficients of the expansion. Provided such a series

exists and that it converges sufficiently rapidly, the expectation of the first
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Figure 3. Probability mass functions and density for cross-correlation of
Gold codes of length 31: (a) relative frequency of values for
integral offset, without data; (b~) mass function for integral
offset, with data; (c) mass function and density "or arbitraryI
offset, with data.
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few terms provides an accurate estimate of the error rate. This would limit

the problem to determining the first few moments of the cross-correlation or,

more practically, an estimate of these moments. This approach has been shown

to provide accurate estimates of the probability of error for direct sequence

systems operating over nonselective slow fading channels [Gardner and Orr,

1979], [Hanlon and Gardner, 1979 and 1980).

It has been previously conjectured that the low-order mome.ts cf the

average cross-correlation in the presence of data are close to those for random

code sequences of the same length. It is shown in Appendix D that the

cross-correlation moments of order 2n for random code sequences can be

expressed as a polynomial of degree n in the code length. Table D.2 lists the

coefficients of these polynomials for the first five even moments. For large

values of L (long codes), the moments are shown to be approximately given by

2n (2n - 1)!! n n 2n -  2 2<82> L {i m +(n-m) -n]/3L} (2.20)
2n+l m= (mj

This expression is exact for the second and the fourth moments which are,

respectively, (2L/3) and (7L 2/5 - 4L/5). These values differ significantly

from the corresponding moments for integral offset, which are L and (3L - 2L)

(Table D.1). Consequently, when analyzing the performance of nonsynchronous

systems, estimates of the probability of error or related functions (e.g.,

signal-to-noise ratio) which make use of the cross-correlation moments, must

consider arbitrary offsets rather than just integral offsets.
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Tables 1 and 2 show the low-order moments of random codes and Gold codes

for code lengths of 31 and 127, respectively. As anticipated, the

corresponding moments are fairly close, particularly the second moments.

However, as the order of the moments increases, the values begin to differ

significantly. The randomizing effects of the interfering signal's data

sequence and the relative timing offset cause the density of the

cross-correlation for Gold codes in the presence of data to take a similar form

to that of random code sequences of the same length. One significant

difference is the maximum value of the cross-correlation magnitude. The effect

of this difference on the second moment for Gold codes relative to random codes

is small due to the low probability that the cross-correlation for random codes

exceeds the maximum value for Gold codes. However, as the order of the moments

increases, the outlying values are weighted more in the calculation of the

moments and the difference in values for the moments is progressively more

pronounced.

To facilitate development and use of the empirical estimates, it is

desirable to consider a continuous density. If we develop a close

approximation to the low-order Gold code moments by use of the moments for a

continuous density, we would, in principle, be able to extrapolate the

approximation to provide estimates of the low-order absolute moments or

low-order nonintegral moments of the Gold codes. These generalized moments are

of potential use when the series expansion of the conditional probability of

error given 8 has a more complicated dependence on 8 than that shown in

Eq.(2.19).
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TABLE 1. CROSS-CORRELATION MOMENTS <8 2n> (L 31)

n Gold Codes Random Codes Gamma Density

1 2.05 E 1 2.07 E 1 2.07 E 1

2 1.12 E 3 1.32 E 3 1.15 E 3

3 9.24 E 4 1.45 E 5 9.95 E 4

4 1.08 E 7 2.27 E 7 1.15 E 7

5 1.73 E 9 4.64 E 9 1.F5 E 9

TABLE 2. CROSS-CORRELATION MOMENTS <82n> (L = 127)

n Gold Codes Random Codes Gamma Density

1 8.75 E 1 8.47 E 1 8.47 E 1

2 1.97 E 4 2.25 E 4 1.93 E 4

3 6.58 E 6 1.04 E 7 6.84 E 6

4 2.96 E 9 6.99 E 9 3.24 E 9

5 2.04 E12 6.26 E12 1.90 E12
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The symmetry and general shape of the density for (Fig. 3) suggest a

Gaussian approximation. The main disadvantage of using a Gaussian density is

that the range of the density is unbounded (tails extend indefinitely). This

tends to exacerbate the effect of the difference in the magnitude of the

maximum cross-correlation values. However, the density falls off fairly

rapidly and would provide reasonable approximations to the low-order moments,

which are of prime concern to our application. The effect of the tails can be

reduced if the Gaussian density is generalized slightly to increase the rate at

which the tails decay. One generalization of the Gaussian density is the

two-sided generalized gamma density. The form of the generalized gamma density

is given by

p(x) = Ajxja -1 exp(- Jxjv )  (2.21)

where for the Gaussian density, a equals one and v equals two. By keeping a

equal to one and setting the second moment equal to that of the random codes,

i.e., 2L/3, the moments for the gamma density are then given by

<x2 n> = [r(2n+I)/r()] [2r(!)/ 3r(j)]n Ln (2.22)
V V V V

To develop the empirical estimates, the value of v is then chosen to

approximately match the first five even moments of the gamma density to the

corresponding moments of the cross-correlation for Gold codes of length 31.

The appropriate value of v is about 2.4. It is expected that this choice of

v would also result in a good estimate of the low-order moments for Golt -odes
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of longer lengths due to (1) anticipated close agreement of the second moments,

regardless of code length, and (2) the dependence on code length for these

estimates is the same as in the single-term approximation for the cross-

correlation moments for random codes. Table 1 shows the moments for the

average cross-correlation for Gold codes of length 31, the corresponding

moments for random sequences of the same length and moments of the generalized

gamma density (v = 2 .4 ). The moments of the generalized gamma density are seen

to agree very well with the moments of the Gold codes.

For Gold codes of length 127, the moments were calculated using a subset of

5 out of the possible 129 Gold codes (permitting 10 pairwise combinations out

of a possible 8256 combinations). We are still concerned primarily with the

average over the entire code set; however, to reduce the calculations, we have

used this subset to approximate the desired results. Table 2 shows the

corresponding moments for this subset. The same general pattern appears as in

the case of Gold codes of length 31. The agreement in the second moments is

very good considering the small sample used.

The random code moments are of particular interest in related applications.

In order to take full advantage of the potential benefits of spread spectrum

systems, very long code sequences are desirable. These long code sequences

enhance the privacy and antijam characteristics. For a given type of code, the

longer the code sequence, the harder it is to effectively monitor or jam the

communications system on which it is used. However, there are practical limits

(technical and economic) to arbitrarily expanding the transmitted bandwidth

[Dixon, 1976a]. In some applications then, the period of the spreading codes
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is chosen to be much greater than the data bit interval. This provides for

both the maximum feasible degree of spectrum spreading and very long code

sequences. Let L be the period of the spreading codes and L' be the number of

chips per data bit, where L is much greater than L'. Then if the spreading

codes exhibit a high degree of randomness [Golomb, 1967) over a data bit

interval, such as in the case of cryptographic codes, we would expect that the

cross-correlation moments would be very closely approximated by the moments of

random codes of length L'.
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Chapter 3

PROBABILITY OF ERROR

For the case of a single interferer where the additive noise is negligible,

the probability of error represents an irreducible error rate which bounds the

multiple-access system performance. Again, the restriction of consideration to

a single interferer does not imply that there is only one other system user,

but rather that only one of the other system users is simultaneously

transmitting. In this case, from Eq.(1.12), the probability of error is given

by

Pr{E} 2 Pr{af2 > f 1
}  (3.1)

where

2 2a2: (P2 /PI) 1 n cos ea , 0n : (8/L) e) 2. (3.2)

It should be noted that f1, f2, 
8n' and 0 are all random. To facilitate the

evaluation of this expression, the conditional probability of error given the

factor a is first determined.
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It is readily shown that if f has a generalized Rayleigh distribution, that

is, f n R(m,O,Q), then the product af also has a generalized Rayleigh

distribution: af - R(m,aa,a 2). From Appendix B, Eq.(B.26), we have

P{E1 1 (1 2m 2 2 k+mr{Ea} 2 Cl(-p2) m exp(-m81/ 1 ) *(a~a11

k=O 1

(-1)k G( ,D2 /BD 2/B 2  (3.3)

where Gk  is given by Eq.(B.27) and B1 , B2, D1 , and D2 are given by Eq.(B.21).

It should be noted that the function Gk has no dependence on the factor a. The

probabilit;, of error is then obtained by taking the expectation of the

conditional probability of error with respect to both a and e which are
n

independent of each other. From the definition of the beta function and the

assumption that 0 is uniform on the interval (0,21), we readily obtain

<Icos e2k+2m> B(l/2,k+m+1/2) w m1 (m+1)k

By applying this result to Eq.(3.3), we have [Hanlon and Gardner, 1980]

(m+1/)Pr{E} = - /2 (_P2 )m exp(-mB 2//1 ) = ( 1 k (-1) k

(p2/P nl~k+m <n2k 2m> G (m,D2/BI 2,D2/B2,'l 18nI•k(1 2.21
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The bivariate density given by Eq.(B.18) implicitly assumes that the m

factors are the same for both fading intensities. If we assume that the fading

intensities are independent, so that the joint density is given by the product

of the marginal densities, we can readily extend the results to the case where

the m factors are different (Eq.(B.11)) [Hanlon and Gardner, 1980)

=-2 -1 1-1/2 2 / (m(+l/2)
= 2 ~ in jep- 1  1  =:0 ( +1)

(m? /MP Qk+m1  2k+2m 1 (>L1-) 2 (m2-m) 2 / (3.6)122/211 <2n2 2Lk 1ml /1 1 1 Lk+m (-m28/? 2 ) 

The practical usefulness of Eq.(3.5) or Eq.(3.6) depends on the series

converging sufficiently rapidly to enable close approximation of the average

probability of error by one or two terms of the series. Since the

cross-correlation moments for the spreading codes are typically very small for

well-designed DS/SSMA systems, rapid convergence is quite feasible provided the

ratio (m1P2Q2/m2P 1Q 1) is not large. Table 3 lists the single-term

approximations for the more important special cases of the generalized Rayleigh

distribution.

Numerical evaluation of the average probability of error requires

determination of the absolute moments of the normalized code cross-correlation.

This can be very difficult, particularly since for generalized Rayleigh or

Nakagami fading, we require nonintegral absolute moments. In general, we would

need the probability density of the code cross-correlation; however, for any
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TABLE 3

SINGLE-TERM APPROXIMATIONS FOR THE PROBABILITY OF ERROR FOR SPECIAL CASES OF

GENERALIZED RAYLEIGH FADING FOR A SINGLE INTERFERER

2

RICIAN: [(I-p 2 )/4] exp(-8 2/2 ) (p 2 /P ) 2 i + 2 2
1 1 2 2 1 1 <82>(M 1=m2= 1)  

..12i 2 (1-') -_

where - Q 1 Q1/2 1/2
w2 = B 1 1 2

NAKAGAMI: 2m-11 2 [(lp 2 )/4]m (p2Q2/pI AI )= <Q 12m >
I m) 2 2/11 <In

(m1 m2=m, = B82=0)

RAYLEIGH: [(1-02)/] (P / 1 <2>
2 2 1 1 n

(m=m2=, B1 =B 2=0)

m7 2m 'm m

INDEPENDENT FADING: exp(-m 6i/21 i) 2 1  (m12  2/m2t1 )

(P=O)

(m2"1) ( / B2 2m1
Lm (-m2 21Q2) < >

Note: for Gold codes, <82> 2/3L and < 18 12m> is approximately given by

Eq.(2.22), after normalization.
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reasonably long code, determination of the probability density is

computationally impractical. Therefore, estimates of the moments are desired.

For the case of Gold codes, an empirical estimate of the low-order even moments

of the cross-correlation is given by Eq.(2.22). By straightforward

extrapolation of this result to nonintegral absolute moments, we can readily

evaluate the single- or two-term estimates of the average probability of error,

provided the parameter m is not too large, i.e., provided the order of the

moments required is not too large.

Figures 4 through 11 are plots of the average probability of error, the

single-term estimates using the approximate moments given by Eq.(2.22), and the

corresponding aproximation error for several examples of Rician and Nakagami

fading. The curves are drawn for the case of equal power (P<f 1>=P2 <f2>),

equal fading statistics (m1 =m2, 81=01, i=I2), and a subset of Gold codes of

length 127. The plots of the exact values for the probability of error were

obtained by evaluating the moments from the actual probability density for the

code cross-correlation taken over a subset of 5 of the 129 Gold codes of length

127 (permitting 10 pairwise combinations out of a possible 8256 combinations).

The probability density is determined by tabulating the relative frequency of

cross-correlation values for all possible integer offsets (Ti=nTc, O n<L) for

each of the code pairs, for all possible data sequences on the interfering

signal (bi), and for all initial phases of the interfering signal's spreading

code (circular shifts of the code within the data bit interval) [Chapter 2],

[Hanlon, Peterson, and Gardner, 1980). This was practicable due to the short

code length and the limited code set. The plots show that the single-term

estimates are quite good over a wide range of the channel fading parameters.
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The Rician results are given for specular power ratios of 0, 50, 67, and 75

percent, which correspond to power factors [R/(l-R) = B2 /Q1 of 0, 1, 2, and 3.

As the correlation of the underlying Gaussians increases ( p increases), the

correlation between f1 and f2 increases and the probability of error drops

towards zero. As the fading factors more closely agree statistically, the

signal and the interference tend to maintain their relative strengths at the

input to the receiver. As a result, it is less likely that the sum of the

signal and the interference will result in a sign reversal in the detector and

cause a bit error [Hanlon and Gardner, 19792. This is also true for Nakagami

fading and, in general, the import of the fading is significantly reduced for

highly correlated channels. As the Rician specular power ratio increases

(fading decreases), the probability of error decreases; however, the

approximation error tends to increase. Use of more than one term of the series

in the approximation would result in a wider range of the parameters over which

close agreement is attained.

The Nakagami results are very similar to those for Rician fading. The

error rate decreases as the fading decreases (m increases) and the

approximation error tends to correspondingly increase. The empirical estimates

of the code cross-correlation moments can be used to calculate additional terms

of the series to improve the accuracy, provided m is not made larger than about

4. For larger values of m, the order of the moments required are too large to

obtain good estimates of the moments from the empirical moments [Hanlon,

Peterson, and Gardner, 1980).
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The average probability of error for Rician fading is dominated by the

depth of fading on the intended signal as evidenced by the exponential factor,

exp(-B12 1 ). A similar dependence for Nakagami fading is reflected in the

exponential dependence on m (order of the moments of the code

cross-correlation). Since we have implicitly assumed that the m factor is the

same for both fading intensities, the distinction is difficult to see. For the

case of independent Nakagami fading, Eq.(3.6) clearly shows that the

exponential dependence is on m1 (fading on intended signal) rather than m2

(fading on interfering signal).

While the performance for both the Rician and Nakagami fading cases

demonstrates high dependence on the likelihood of deep fades on the intended

signal, the performance shows significantly different dependence on the code

length in the two cases. This is readily seen by comparing the single-term

approximations. For Rician fading, the approximation is proportional to <82 >
n

and, hence, from Eq.(2.22), L - , whereas, the single-term approximation for the

2m -m
Nakagami case is proportional to <8 jI >, or equivalently, L - . The basis for

this difference can be seen by looking at the case of independent channels.

For independent channels, the error rate can be alternatively represented as

[Appendix C], [Hanlon and Gardner, 1979]

Pr(EI = -1 1 -1- <18nk> <Ics k> CP2k)k/2 < f C> P(k-1)(0) (3.7)2 k~l lk> (2/ <f2> Pfl

where <fk> is the k-th moment of the fading intensity on the interfering signal

2

and p(k-1)(0) is the (k-1) derivative of the probability density for the fadingf 1
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intensity of the intended signal evaluated at zero. This expression requires

the derivatives at the origin to be finite, which, in general, is not the case

for the generalized Rayleigh distribution. By restricting our interest to

integral values of (2m1 ), we can see by expanding the probability density for

f in a power series that the first nonzero derivative at the origin is for k

equal to 2mI. The larger the value of m1  (the shallower the fading on the

intended signal), the higher the order of the code cross-correlation moment

which first contributes to the series. This is exactly the effect seen in

Eq.(3.6), which can also be derived from Eq.(3.7) when (2mI) is an integer.

From Eq.(2.22) we see that the first term varies as Lm. For Rician fading, m

is equal to one and the first term is always proportional to the normalized

second moment, which is to say, inversely proportional to the code length.

Consequently, the degree of improvement in performance to be expected from

increasing the code length is highly dependent on the form of the distribution

of the intended signal fading intensity, particularly the behaviour

(derivatives) of the distribution near the origin (region of deep fades). As a

result, we cannot, in general, approximate a given fading distribution with

another distribution. For example, Nakagami gives the transformation for

approximating a Rician distribution by a Nakagami distribution as [Nakagami,

1960], [Nakagami, et al., 1957]

N R + a m S - 4 N)-1 (3.8)

This transformation is obtained by equating the second and fourth moments

(Eq.(B.4)). In terms of the specular power ratio (Eq.(B.6)), this implies
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m 0I - R2 (39)

Under this transformation, specular power ratios of 0, 50, 67, and 75 percent

correspond to m values of, respectively, 1, 1.33, 1.8, and 2.29. It is clear

from Fig. 4 and Fig. 8 that this transformation does not provide comparable

performance measures in terms of bit error rates. Likewise, any transformation

which depends primarily on equating moments and, therefore, on the overall

behaviour of the distribution, generally provides poor agreement since the

error rate is determined primarily by the behaviour of the distribution in the

region of deep fades [Barrow, 1962). Regardless of the form of the

distribution, relatively long code sequences are required to maintain low error

rates unless the fading on the intended signal is very shallow or the fading

correlation approaches unity.

3.2. MulktileIndependent Interferers X= Additive Noise

For the case of several simultaneous interferers, the individual

interference terms in Eq.(1.9) are independent of each other due to the

presence of their respective data bits and timing offsets. The probability

density for each term will be symmetric due to the cross-correlation factors

and phases. These factors also tend to scale the individual terms towards zero

(1Cnc " 1, cos e1i 1), i.e., towards their means. Provided the Pi are on the

same order (which will be assumed), then none of the individual terms dominates

the series. Under these conditions, the composite interference at the output

of the correlator (Z) will be asymptotically normal with zero mean and variance
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2 2 M 2
VarCZ) VarCN) + Var(I) (OT d /4) + CT d /4)<8 n . P . <f t (3.10)1=2

The probability of error is (Eq.(1.12))

Pr{EI -1 PrIZI > S) . (3.11)

Since Z is assumed to be zero-mean Gaussian, IZI is one-sided Gaussian, that

is, generalized Rayleigh: IZI %, R[1/2,0,Var(Z)]. Evaluation of the probability

of error then reduces to determination of the probability that one generalized

Rayleigh variate is greater than another when they are independent. From

Eq.(B.16), we have

- ,122(ml1+1/2) k C-)k k+m (M 1-1)3.2
Pr{E} = 2j exp- 1X/ 1) (.+) (1) y Lk(-2

Jk=0 1 k

where, for M system users,

4m1Var(Z) m [ 2 2
Pl[2lTd SNRG + a(M-1)<> ( 6(1

M
M ( W- + [ 2 )/P1(Q + 62 A (3.14)

M1 i=2 [PC2

and SNR G is the signal-to-Gaussian-noise ratio defined by

2.IARG [P Td 2 VarCN)) 2P Td no (3.15)
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The usefulness of the series in Eq.(3.12) is restricted to values of y which

are less than one. For values of y greater than one, the series does not

converge. There are two approaches to circumvent this problem. First, we can

evaluate the complement of the probability to obtain an expression for the

probability of error when y is greater than one, that is,

Pr{Ej = [I - Pr[S I JZf}] / 2

-12 (1/2 )k -k (ml-l) 2
= CI - y-1/2 (1 k (-y)-k Lki12 (-mlS1/21)] / 2 . (3.16)

k=O

Alternatively, we can use the change of variables

t = y/(1 + y) . (3.17)

By using the binomial theorem and Eq.(A.27), we then obtain

Pr[E)J - 1-1/21ep- 2 /P m (1) n m 12 exp(-m 1B1  1 n!
ml n=O

n (m 1 +1/2) k(_n) k (mi-1) 2
k:o (l)k (m +l)k Lk (m 1 1  1  . (3.18)

Since t is always less than one and less than y, the convergence properties of

this expansion are much better. For small values of t, i.e., t much less than

one, the average probability of error is very closely approximated by
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PHE M, ml"1/2  B/

Pr{E} tml exp(-mI1/ I) 2(3.19)

If the signal-to-Gaussian-noise ratio is made arbitrarily large, we have

lim y = amI (M-1) <8 > ( + B1/ i) . (3.20)
SNR-6

-2
For reasonably long code sequences, <c > is very small and y tends .o be small.n

In this case, t and y are approximately equal and Eq.(3.19) very closely

approximates the average probability of error. Since we are considering an

arbitrarily large signal-to-Gaussian-noise ratio, this represents an

irreducible error rate due to cochannel interference and fading. Table 4 lists

the estimates of the irreducible error rates for the various special cases.

We have analyzed the multiple interferer case by assuming that the

composite interference is asymptotically normal (Gaussian) with zero mear. As

a result, the interference was specified by its variance (power). We would not

typically expect the Gaussian assumption to hold if the number of interferers

was very small (say less than five). This can be tested by looking at the

single-term estimates for the irreducible error rate, evaluating them for a

single interferer (M=2), and comparing the estimates with the results of

Section 3.1 for a single interferer. The single-term estimate for the

irreducible error rate for multiple users when M equals two is given by

1 ml - I / 2 / Em < 2 m1
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TABLE 4

SINGLE-TERM APPROXIMATIONS FOR THE IRREDUCIBLE ERROR RATE FOR MULTIPLE

INDEPENDENT USERS

GENERALIZED RAYLEIGH: 1 t [
m i -1/21 exp(-m 2 / 22 1 1 1

R : exp(-/ 621) ) [4a1(M1)<8 2 >(1 + 8 2/ im

1 ]x(-O) -

n

where Cc _ (M- I) 
"I  [ P i a +32 )P 1(n 1+621)

i=2

RICIAN: t exp(-c/) 2 / 4 3 (M-I)<>( + B/Q exp(- /I )  4

(81:=0)

RAYLEIGH: i {I[1+a(M_11<8 2>1- 1121 = a(M-ll<a2 >
2 nn

(Mi: 1, 1 Z0)

Note: for Gold codes, <a2 > = 2/3L.
n
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Comparison with the single-term estimate for independent fading given in Table

3 indicates that there can be a significant difference. However, for Rician

fading on both channels (m1=m2=1) , the result given by Table 3 is identical to

that given by Eq.(3.21) for Rician fading on the intended signal (mi =1). This

comparison extends to Rayleigh fading when BI is set equal to zero in the

Rician estimates. This agreement arises because the single-term single-

interferer estimates in both cases depend only on the interference power. In

these cases, the Gaussian assumption for the interference is valid even when

the number of interferers is minimal. However, comparison of the Nakagami

results (sB=2=0) does not provide the same agreement unless we look at the

special case of Rayleigh fading. The difference arises because the Nakagami

multiple user result is dependent on the m-th power of the interference power,

that is, proportional to (<a2>m); whereas, the single interferer resultn

(Section 3.1) depends on the (2m)-th absolute moment.

Although the expression for the probability of error does not appreciably

simplify for the Rician case (mi=1), for Nakagami fading statistics for the

intended signal (B =0), Eq.(3.12), Eq.(3.16), and Eq.(3.18) reduce to

1

m i1- 1/21 1
Pr{E} T t m 2 F 1(1/2,m1;m1+1;t) = 2 It(m1,l/ 2 ) (3.22)

where 2F1 is a hypergeometric function and It is a normalized incomplete beta

function. This expression is equivalent to a result given by Barrow [1962].

It is readily shown that
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2F1 (1/2,m;m+1;t) = (1-t)-
1 /2 t2(m+1) 2F1(3/2m 1;m 2;t) (3.23)

By truncating both hypergeometric series in this relation, we obtain the bounds

mt -1/21 2mt ~ Fl(1/2,m;m+1;t) < [ (1-t) -  -. (3.24)
+ ( ) 2 2(m+ 1)

Extension of these bounds to the probability of error for Nakagami fading is

straightforward and provides the estimate (for small t):

Pr{E} 1 ml 1/21 C 1 + _1-t)-1/2 t(ml-1) (3.25)4 - 2(ml+l) ]

For the case of Rayleigh statistics (mi=1, 81=0), Eq.(3.22) reduces further to

the well-known result:

{ [ -1/2 1 -1/2

PE 2P (1-t) 1 [ - (1+y) 1 (3.26)

Figures 12 and 13 are plots of the average probability of error versus the

signal-to-Gaussian-noise ratio for the multiple user case for Rician and

Nakagami (m-distributed) fading, respectively. Both sets of curves are drawn

for equal effective power (Pi = P 1' mean square values normalized to one

(<f2> = <f2> 1), and <82> = 2/3L. The figures clearly demonstrate that thei 1 n

average probability of error saturates at an irreducible error rate for
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arbitrarily large signal-to-Gaussian-noise ratios. This effect is due to the

combination of cochannel interference and fading on the intended signal. The

deeper the fading on the intended signal or the greater the number of

interferers, the more likely that the intended signal component falls below the

level of the cochannel interference component in the receiver, thereby

resulting in an error.
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Chapter 4

SUMARY, CONCLUSIONS, AND RECOMENDATIONS

4.1. Sumnr

This study has investigated the error performance of direct sequence spread

spectrum multiple-access communications systems on nonselective fading

channels. The receiver model used throughout the analysis is a coherent

correlation receiver. The receiver correlates the received signal against a

synchronized copy of the intended signal's spreading code sequence. The

channel model assumes slow, nonselective fading where the fading intensities

are distributed as generalized Rayleigh variates. Results are obtained for the

special cases of a single interferer without additive noise and multiple

independent interferers with additive noise. The results are developed as a

series expansion in the code cross-correlation moments (single interferer) or

as a series expansion in the powers of the code cross-correlation second moment

(multiple interferers). To develop simple estimates of the probability of

error, empirical estimates of the low-order cross-correlation moments of the

spreading codes (taken to be Gold codes) are developed from a gamma density

approximation based on the cross-correlation moments for both Gold codes and

random codes. Numerical results for the probability of error are obtained with

these estimates and compared with the results based on exact moments developed

from the code cross-correlation probability density.
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4.2. Cnluin

The analysis developed in this paper has shown that the method of series

expansion in the code cross-correlation moments provides a tractable solution

to evaluation of the error performance of direct sequence multiple-access

communications systems operating over nonselective fading channels. In

particular, truncation of the series provides simple single-term estimates

which are accurate over a wide range of the channel fading parameters. These

results show that the error rate is highly dependent on the form of the

intended signal's fading distribution in the region of deep fades.

Consequently, approximation of a given distribution by another distribution

(e.g., approximation of a Rician distribution with a Nakagami distribution) is

generally not feasible unless great care is taken to match the distributions in

the region of deep fades. As a result, the channel must be carefully modeled.

Use of the generalized Rayleigh distribution has encompassed the results for a

wide class of fading distributions.

Use of empirical estimates of the cross-correlation moments has been shown

to provide highly accurate estimates of the error rate unless the fading is

very shallow. In addition, it has been shown that the direct use of moments

based on integral timing offsets between the codes does not generally provide

good estimates. The moments must be calculated for arbitrary timing offsets;

however, the moments for arbitrary offset can be readily developed from the

moments for integral timing offsets.
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It has also been shown that the effect of fading on the error rate is

significantly reduced for highly correlated channels. Further, unless the

fading correlation is either close to unity or the fading on the intended

signal is very shallow, long spreading codes will be required to maintain low

error rates.

4.3. Recommendations

The analysis presented here has been restricted to the case of slow,

nonselective fading. With this basis, extension of the results to relatively

fast, nonselective fading would provide additional insight into direct sequence

system performance over generalized Rayleigh fading channels. Alternatively,

the effect of time variations in the channel characterization could be

explored, that is, the channel fading parameters could be taken as random

variables with some assumed distribution. The analysis would proceed as

presented and then the expectation over the fading parameter distributions

would provide the long-term average error rate. In general, this extended

analysis may not prove tractable. However, the single-term estimates of the

average probability of error could be analyzed in this fashion with reasonable

anticipation of success.

An alternate area of investigation would be the analysis of diversity gain

(e.g., space diversity) possible with direct sequence systems operating over

generalized Rayleigh channels. This analysis would be particularly important

for channels whose fading depths were on the order of Rayleigh fading or

deeper.
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APPENDIX A

MATHEMATICAL FUNCTIONS AND FORMULAS

To simplify the references in this appendix, they are abbreviated to two

letters designating the work, followed by the section, page or equation number

in the reference. The two-letter abbreviations correspond as follows:

AB-EAbramowitz, 1961], ER-[Erdelyi, 1953), GR-4Gradshteyn and Ryshik, 1965],

HN-[Hansen, 1975), MO-EMagnus, Oberhettinger, and Soni, 1966) RA-[Rainville,

1960), VT-[Van Trees, 19681.

1. Pochhammer's symbol [AB6.1.22, ER1.21 (5), GRp.xliii, HN2.4, RAs.18]

(a) k =a(a+1)(a+2)...(a+k-1) =P(a+k) / fl(a) , (a) 0 =1 (A.1)

2. Hypergeometric function [AB15.1.1, ER2.1.1(2), GR9.100, HN1O.9.2, RAs.29(1)]

(a)~~~x k~b k % k (A.2)
2F 1b zx (c) k1

3. Linear (Euler) transformation for hypergeometric function [AB15.3.3,4;

ER2.1.4(22),(23); GR9.131(1); HN10.9.2; MOp.'47; RAs.38(14),(5)]

2F (a,b;c;x) (1 -x) c-a-b F (c-a,c-b;c;x)

(1 X-a F(a,-bc--)(A3
- ( -x) 2 1 X,-1 A3
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4. Hypergeometric function with unit argument [ABl5.l.20, ER2.1.3(l4), GR9.122,

HN7.'4.114, Mop.40, RAs.32]

2 F 1(a,b;c;l) = r(c) N7c-a-b)] / Er(c-a) P(c-b)) (A.4)

where c 1 0, -1, -2, H e (a-a-b) > 0.

5. Confluent (degenerate) hypergeometric function [AB13.l.2, ER6.l1l),

GR9.210(l), HN1O.8.3, MOp.262, RAs.68(l)J

(a) k k
1F (a;b;x) (b * x (A.5)

6. Kummer's transformation for the confluent hypergeometric function

CAB13.l.27, ER6.3(7), GR9.212(1), HN1O.8.3, MOp.267, RAs.69(2)1

7. Generalized hypergeometz-ic function [ER4.1(1), GR9.14(), HN10.48.i, MOp.62,

RAs. 4J4(2 )

F ( a i ~ ....a ; b l ~ ....b ; X )( a 1 ) k ( a 2 ) k ...( a p) k - x k( A 7

k=0 1 k 2 k- q k

8. Confluent hypergeometric function of three variables [HN4t8.21.18]

(a~~b;C;XYZ(a k (b) kynZ A8

3 bcxnymz) k! n! kml (c) k Y~(A.8
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9. Binomial function (binomial theorem) [AB15.1.8, ER2.8('I), HN1O.'4.6, MOp.38,

RAs.45(3))

(1 -x) -a F (a;;x) 2F (a,b;b;x) (A.9)

10. Binomial coefficient [AB6.1.21, ER1.21(6), MOp.'41

r (x+l) / r(y+l) r(x-y+l)] ,{ (_,)n' (_x) /n! (A.10)

11. Generalized Laguerre function [ER6.9.2(37), MOP.3361

L (a) (x) r)F,(-r;a+l;x) , L( (x) =L C)(A.11)r (rJ 1 r r~x

When r is a nonnegative integer, the Laguerre functions are Laguerre

polynomials AB13.6.9, ER6.9.2(36), GR8.972C1), HN10.8.4, RAs.112(1)]. For

example,

(a) (a) (a) .1r 2L xW) 1, L 1 ) a.1-x, L 2 x) 2 LX -2x(a+2)+(a+l)(a+2)] (A.12)

12. Gamma function (Euler's integral of the second kind) [AB6.1; ER1.1; GR8.31;

MOp.1; RAs.8,s.12J

-t x
r(x+1) f dt e- t ,Re x > 0 ;P(x.1) x PNx) x! (A.13)
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13. Legendre's duplication formula [AB6.1.18; ER1.2(15); GR8.335(l); HN2.6,2.7;

MOp.3, RAs.19]

r(2x) = 22x-1 r(x)r(x+1/2)/r(I/2), (2x)2k 2 (x)k (x+1/2)k (A.14)

14. Incomplete gamma function [AB6.5, ER9.1, GR8.35, H16.10.I, MOp.337]

F(a,x) = ' dt e-t ta-1 = r(a) - a-1 xa 1F1 (a;a+1;-x) (A.15)
x

The integral representation requires larg xl < 7.

15. Beta function (Euler's integral of the first kind) [AB6.2, ER1.5, GR8.38,

MOp.7, RAs.16]

1 L-i b-1
B(a,b) = F(a) r(b) / r(a+b) f dt t' (1-t)

0

= 2 f dt (sin t) 2 a- (cos t) 2 b-  (A.16)
0

The integral representations require Re a > 0, Re b > 0.

16. Incomplete beta function [AB6o6, ER2.5.3, GR8.391, HN6.11.12, MOp.356]

x1 
a

B (a,b) = dt ta - 1 - tb-1 = a 2F1(a,l-b;a+i;x) (A.17)() f ( -0) aA17
0

17. Normalized incomplete beta function [AB6.6,26.5; ER2.5.3, G1R8.392]
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i x (a,b) B x(a,b) /B(a,b) 1 I1 x (b,a) (A.18)

18. Error function and complementary error function [AB7.1, ER6.9.2(23),

GR8.25, HNp.507, MOP.349, RAp.127]

x 2
erf~x) [2/r(1/2)] fdt et 1 erfc(x) 2 P(2 1 X) -1

0

2x 1F (1/2;3/2;-x 
2) r(1/2) (A.19)

where P is the standard normal cumulative distribution function.

19. Modified Bessel function of the first kind (order r) EAB9.6.'47,

ER7.2.2(12), GR8.4J45, HN1O.7.11, Mop.66, RAs.65(1)]

I 2x r F( 2) ~+)(.0
Ir (2)=x 0 F1 ;lx)/rr (.0

20. Hille-Hardy formula (bilinear generating function for Laguerre polynomials)

[ER1O.12(20), GR8.976(1), HN48.21.20, MOp.242, RAs.120)

k! tk L a(x) L. )(y) =(1-t)- r~a+1) (xyt)- /

kO Ca.1) k k k

exprt~x+y)/(t-i)] I [2(xyt) 1 /(1-t)] , ti < 1 (A.21)

21. Bilinear generating function for Laguerre polynomials [HNL48.21.183
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k____ k L(a)(X ~)y (c)i -a-
L (c+m+1) k L k W Lk+m~y m! 1-t)-l

For m equal to zero and a equal to a, this reduces to the Hille-Hardy formula.

22. Laguerre series for modified Bessel functions of the first kind [AB22.9.16,

ER1O.12(18), GR8.975(3), HN48.7.2, MOp.2i2, RAs.113(2)]

(-1) kt 2kL () F(a+1) (xt)- e- I (2xt) (A.23)
k=O (1+a) k k a

23. Generalized Marcum's Q-function £VTp.411)

Q~ (a,b) = f dx a (x/a)m exp[- 1.(x 2 + a2 )] I (ax) (A.24)
mb 2 rn-1

24. Marcum's Q-function [HN58.5.3, VTp.395)

Q(a,b) ex .1-a2 + ) (a/b)k I Cab) , a .b

ex~2( k=Ok

-expC-~-(a 
2 + b2) (b/a )k I Cab) ,b _. a (.6
2k=1 k (.6
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25. Integral of Bessel function, exponential and power [AB11.4.28, ER7.7.3(22),

GR6.631(I)]

2 -(bla)r r( s)

f dx exp(-a2 x 2 ) x 
s- 1  (2bx) = iF1[(r+s)/2;r+1;(b/a)

2

0 r2a s r(r+1)

2 r[(s-r)/2] (b/a)r a- s exp(b 2/a2 ) L(r) 2 (-b 2 /a 2  (A.27)

= 2

where Re a2 > 0, Re (s+r) > 0.

26. Interchange of order of summation [HNs.4.1, RAs.37]

f(k,n) =f(k,n) =f(k,n-k)

n=O k=O k:O n=O n=O k:O

n
= I f(n-k,k) (A.28)

n=O k=O

27. Powers of series [AB3.6.20, GRO.314]

S kak xk )n = ck x 
k  (A.29)

k=0 k=0

where

n __._0)
CO a0 ' cm = a (kn-m+k) a C for m1 (A.30)

0 a0k=1 k rn-k orm.

28. Double factorial function [ABp.258, GRp.xliii]
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(2n)l! (2)(4) ... (2n) 2 2n  nI (2n-I)!! = (1)(3)...(2n-1) (A.31)

Z9. Generating function for Stirling numbers of the first kind [AB24.1.3,

HN52.2.1]

n

(-x) = (_I) n  I xm  S1 (n,m) (A.32)

30. Recurrence relation for Stirling numbers of the first kind [AB24.1.3]

S1 (n+1,m) = S1(n,m-1) - nS1(n,m) , n >_1 ; S1 (n,0) = 6On' (A.33)

S1 (n,1) = (-I) n-
1 (n-l)!, S1(n,n) 1, S1(n,n-1) = -n(n-1)/2 (A.34)

31. Generating function for Stirling numbers of the second kind [AB24.1.4,

HN52.2.151

n
(-x) n  Z (_I) m (x) m  S2(n,m) (A.35)

m=O

32. Recurrence relation for Stirling numbers of the second kind [AB24.1.4]

S2 (n+1,m) = mS2 (n,m) + S2 (n,m-1) , n2;R.1 ; (A.36)

S2 (n0) O0n, $2 (n,1) = S2(nn) 1, S2 (n,n-1) = n(n-1)/2 (A.37)
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33. Series involving Stirling numbers of the second kind [HA6.7.22]

n m

S(-1)k (-n) k km / kI 2n  7 (-n) k (-2 )-k S2 (m,k) (A.38)
k=1 k=1

34. Generating function for generalized Euler numbers of order (-m) [HN51.7,

MOp.32]

(Cos t)m  (_1)k t2k E(-M) / (2k)! (A-39)

= 5~2k""k=0

From Hansen [HN88.1.2], we have

S km
m (-1) 2 k m m 2k .

( )(2k)! [2-m  I (an-m) I(A40)
k=O n=O

By comparing Eq.(A.40) and Eq.(A.39), we obtain [Hanlon, Peterson, and Gardner,

1980]

-- ) 2-m l
E~~ ~ (m)= - (2n-m) 2k (.1

E2k L n - " A.41)

35. Generating function for Bernoulli numbers [AB23.1.1, ER1.13(I), GR9.610,

HN50.5.3, RAs.153(8)]

t / (et - 1) : B tn / n! , !tl<2 (A.42)
n=0

For example,
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B0  1 , B -1/2 B 2 1/6 , B4  -1/30 (A.43)

36. Series expansion for logkcos x) in Bernoulli numbers [AB4.3.72, ER1.20(6),

GR1.518(2), HN50.6.8]

log(cos x) Z (_I)n 22n-1 (22n-I) B2n x
2n/[n(2n)!], IxI< /2  (A.44)

n=1
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APPENDIX B

PROBABILITY DENSITY FOR FADING INTENSITY

B.1. Unvaia e .si.

Let yl,...,yn be independent and identically distributed normal random

variables with mean 11 and variance a 2. The Euclidean norm of these variables,

designated f, is defined by

n 2 1/2 (B.1)

i=I

.t is well-known that f has a noncentral chi distribution with n degrees of

freedom and its probability density is given by [Miller, Bernstein, and

Blumenson, 1958],[Nakagami, 1960)

mI

pf(x) 2mx exp{-m(x 2 + 8 2 )/} I_(2m6x/2) x > 0 (B.2)

where I is a modified Bessel function of the first kind of order r andr

2 112
m n/2 , = n a , n u (B.3)

Although this development requires n to be a positive integer, Eq.(B.2) is a

valid fading probability density for all m not less than 1/2. In this context,

f is referred to as a generalized Rayleigh variate (generalized n-distributed

variate) [Nakagami, 1960),[Miller, Bernstein, and Blumenson, 1958). For a
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random variable whose probability density is given by Eq.(B.2), its

distribution is represented by f \, R(m,B,Q). The moments of f are readily

evaluated by using Eq.(A.27) and are given by [Nakagami, 1960],[Krishnan, 1967]

<f > = r(m + V/2) (/m) F1(-v/2;m;-mB2/Q) )

= ((v/2 + 1) CQ/m) v/2 L(m-1)(-m62/) , v+2m > -1 (B.4)
v/2

where < > represents expectation, 1F1  is a confluent hypergeometric function,

and L(a ) is a generalized Laguerre function. Note that the mean square value
r

of f is just

2 2

<f2> =Q + . (B.5)

The generalized Rayleigh distribution encompasses a wide class of

distributions which are useful in the study of communications over fading

channels. For m equal to one and 2 equal to zero, f has a Rayleigh

distribution. For m equal to one and 8 arbitrary, f has a Rician distribution

(Nakagami-Rice or n-distribution). In this case, 62 is the specular power and

0 is the mean square value of the Rayleigh component. The depth of fading can

be measured by the specular power ratio (the ratio of the specular power to the

mean square value), designated R and defined by
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R = /(i+ 2 (B.6)

The depth of fading increases with decreasing R. However, Rician fading can

never be deeper than Rayleigh fading (S = 0). For 3 equal to zero and m not

less than 1/2, f has a Nakagami distribution (m-distributed). In this case,

2 2the mean square value of f is Q and the variance of f is (2 /m). Hence, m is

the inverse of the normalized variance of f2 [Nakagami, 1960]. The depth of

fading increases with decreasing m. For values of m less than one, the fading

is more severe than Rayleigh fading, and for values of m greater than one, is

shallower than Rayleigh fading. Consequently, Rayleigh fading is a special

case of both Rician and Nakagami fading. In the general case, the fading

decreases as either m or 6 increases.

The cumulative distribution function for a generalized Rayleigh variate is

given by

2 1/2 2 1/2Ff(x) I - Qm[(2m2 /.Q) , (2mx / I) 2  (B.7)

where Q is a generalized Marcum's Q-function. To obtain an alternate

expression, we make use of the Laguerre series for modified Bessel functions

(Eq.(A.23)) to express the probability density as

Pf~x) 2P ) exp(2m3/ ) __ k m +k-1

rn/k) {x(m L (M M /P). (B.8)

Integration of the probability density is then straightforward and provides
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[Hanlon and Gardner, 1980]

1 p(-m=2 /[2) (-1)k {22 m+k L(m-1)(m32/Q) (B.9)
P(m+1) ex -(m+1) k k

The probability that one generalized Rayleigh variate exceeds another when

they are independent is given by

x
Prif2 > f dx pf(x) f dy pfly)

0 2 0 1

: dx pf (x) FW(x) <Ff(f 2  (B.10)
0 2 1 1

By using Eq.(B.9) and Eq.(B.4), we readily obtain

-m 1 +k
Prtf > fl = exp(-m1/Q) (_1)k (m 12/m P2 1 1k=O 1221

(m -1 ) (SnL (m2-I) 2
Lk ( k+m 2 (.11)

Note that if the ratio (m 12/m2 11) is greater than one, the series does not

converge and the representation given by Eq.(B.11) is formal. In this case, we

can use the alternate expression

Pr{f - Pr{f 2 f2 (B.12)
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which can be written from Eq.(B.11) by inspection. Several special cases of

the general result are of interest:

(a.) For f1 and f2 both Rician (m 1=m 2=1), use of Eq.(A.22), Eq.(A.20), and

Eq.(A.26) provides [Schwartz, Bennett, and Stein, 1966], [Van Trees, 19681

2 1 / 2 1 /2
Pr{f 2 > fl1} = Q([232/(PlI+Q2)] 2 1 [ 1 /: 2)] I 2

2 22 1 /(21+2)] exp[-(1 +22 /(C 2)] I1 23 1B 2/(21 +2)] 13

(b.) For f, and f2 both Nakagami m-distributed (1 = 2=0), Eq.(B.11)

readily reduces to

Pr{f 2 > f} m 2Ql, 2F1(ml,m1+m2 1+1;-mC 2/m2 Cl) (B.14)

After linear transformation of the hypergeometri function and use of Eq.(A.17)

and Eq.(A.18), we obtain

Pr{f 2  > f = It (Mlm 2 ) , t = Em12 2  / (m n 2  + )] (M.2

(c.) For f2  one-sided Gaussian (m 2 = 1/2, 2 = 0), we obtain ty

substitution,
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Pr{f 2 > fl} 1 exp(-m 1 2/91) kO I +k ()k

S +k m 1 ) 2

Table B.1 lists the results for several additional special eases.

B.2. Bivariate Density

Let the pairs ( be independent and identically

distributed where the elements Yj1 and YJ2 are jointly normal for all J with

means uI and u variances c2 and a2, and correlation coefficient P. Then the

norms, f1 and f2, defined by

n 2 )1/2 (B.17)
i=  YJi 

(B17

,J=l

each have a noncentral chi distribution with n degrees of freedom and the

bivariate density, for the magnitude of P less than one, is given by [Miller,

Bernstein, and Blumenson, 1958],[Krishnan, 1967)

pff(XlX 2) = A (pD1D2 )-m xI x2 exp(-Blxl-B2 x2)
11/2 2

Ck Ir(2DlX1) Ir(2D2x2 ) Ir(
2pB1 B2 X1 X2 ) (B.18)

he re 1/ 2 1/ 2

where
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TABLE B.1

SPECIAL CASES FOR PROBABILITY THAT ONE GENERALIZED RAYLEIGH VARIATE EXCEEDS

ANOTHER WHEN THEY ARE INDEPENDENT

fl f2 (Ml1
8 ;m2'8 2 ) Prf2 > fl}

Rician Rayleigh (1,B1;1,0) [2/(Q1 + S2 )
] exp[-82/(Q1 + S1

,Nakagami Nakagami (mlo;m2,0) 1 (m t = cm1 2 /(m1 2 m2 Q )]

m1

Nakagami Rayleigh (m,O;1,0) [m1 2 /(l+m1 2 )

Nakagami Gaussian (m1,0;/2,0) It(m1,1/2) , t = [2m, 2 /(Q +2m 1 Q)]

Rayleigh Rician (1,0;1,62) 1 - [0l/(Ql+02)] exp-62/(Ql+Q2 )]

Rayleigh Nakagami (1,m;22,) 1 -

Rayleigh Rayleigh (1,0;1,0) [Q2/(a +Q

Rayleigh *Gaussian (1,0;1/2,0) 1 - [Q1/(Q1 252)]1/2

Gaussian Nakagami (1/2,0;m 2 ,0) It(1/2,m 2 ) , t = [ 2 /(2 +2m2 1)]

*Gaussian Rayleigh (1/2,0;1,0) Qa2/(O2+201)] 1/2

*Gaussian #Gaussian (1/2,0;1/2,0) sin- 1[Q2 /( 1 +2 )]1/2

*Gaussian refers to one-sided Gaussian.
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C(2m-2)k(m)k
r =k~m-k , (m-l)k k1 (3.19)

Z1/2 1/2 1/2 1/2 (B.20)

-2/ -121- 2 - 2

Bi =E mii-02] "  D D = mWt l 2(1-P )] "  (B.21)

A 2B B12-1 (1--2)rSm2 /Q (D2(.2

4B1 pMm (M 1  2 )m expL-(m 1  1) 2'B 2)B.2

Note that in the Rician case (m = 1), we have

lum Ck = lim (2m-2)k / (M-)k= k (B.23)
m-*1 mk1

where Ek is Neumann's factor, which is defined to be equal to 2 when k is not

zero, and equal to 1 when k is zero. As before, Eq.(B.18) is a valid bivariate

probability density for all m not less than 1/2 and, in this context, is the

joint probability density for correlated generalized Rayleigh variates with

marginal distributions fl 'U R(m' 1,fQ1 ) and f2 nu R(m's 2SQ2 ).

In general, the expression for either the joint moments or the correlation

between fl and f2  is very complicated [Krishnan, 19673; however, for the

Nakagami or Rayleigh cases, the normalized covariance of F1  and f2  (power
12

correlation coefficient) is very simply related to the correlation coefficient

of the underlying Gaussians, that is, [Nakagami, 1960]
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Cov(f, f 2 ) / [Var(f 2.) Var( 2 P2

1 2 1 af')2  p

The probability that one generalized Rayleigh variate exceeds another in

the correlated case is given by

CO x2

Pr{£f2 > f11 = dx2  f dx1 Pflf (xlx 2 ) • (B.25)
0 0 1 2

The inner integration can be evaluated by expanding the exponential and Bessel

functions involving x1 (Eq.(B.18)) into nested power series in the variable

xI and interchanging the order of integration and summations. The outer

integration is then readily evaluated by interchanging the order of integration

and summations and using Eq.(A.27). Use of Eq.(A.28) and Eq.(A.11) then yields

Pr{f 2 > fl} = (1-02)m exp(-m$ 2/Q 1 ) I (Q2/)k+m (-1) k

2 1 1 1 k=0

2 ,D2/B 2) (B.26)Gk(m,D1/B 1, 2 8,

where

k (2m-2)n  k-n (1-k-m) s (1+k..)S

Gk(mxy't) - (-) (txy) (nm) s3
n=O n aZO a

tsa L (n mI) (x) L (n~m-l)(-y) (B.27)

k-n-s k+m+s

L ,,,- J
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As in the independent case, if the ratio (2/01) is greater than one, we can

evaluate the complement of the probability (Eq.(B.12)).

For the case where f 1 and f2 are independent (p=O), the only contribution

from the sums over a and n in Gk is the first term (n=O,szO) and Eq.(B.26)

reduces to Eq.(B.11) for m 1 and m 2 equal to M. The result also simplifies

considerably if f1 and f2 are both Nakagami -distributed. In this case,

D1 and D2 are both zero and the only contribution from the sum over n in Gk  is

the first term (n=O). By noting that

L(a)(0) (rea (B.28)
r r

we then have

k=O k1 (m+1)k 2 1

2
F I (-kk2m;m;p 2) . (B.29)

If we further specialize to the case where f1 and f2 are both Rayleigh

distributed (mul), we obtain

Pr(f2 > fl} (1OP 2 ) (-1 )
k +1 (P2/n1 k 2FI (1-kkce;1;0

2  (B.30)
Wcl
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APPENDIX C

SERIES EXPANSION FOR PROBABILITY OF ERROR

The probability of error is given by

Pr{E} I dy dx p s(x,y) (C.1)
0 0

To develop a series expansion, the joint density of S and Z is expanded in a

one-dimensional Taylor series about x equal to a, that is,

Psz~ x 'y  x an n
(xy)= - p (x,y) (C.2)

SZ n=O n! ,n sz x=a

Hence, the probability of error can be represented as

(x-a) n an xyPr{E} f dy fdx i an n Psz(XY) I (C.3)0 0 nZO ax xma

By interchanging the order of integrations and summation and by noting that the

partial derivatives evaluated at x equal to a are not a function of x, we

obtain

Pr{E) a dy n-p 5z(x,y) f dx (x-a)n . (C.4)
niO ax xza 0

After evaluating the integration over x, we have
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Prig) Z (n.1) f dy - Ps(X,Y) I [(y-a)n' - (-a)n3. (C.5)
nfiO x0 xn  x=a

By using the binomial theorem (Eq.(A.9)) to expand (y-a)n , Eq.(C.5) becomes

Pr{E} aa (n.1)n (X,y) [n] ym (-a)n-m 1 . (C.6)
n=O 0 Xn x=a Mail

After again interchanging the order of integration and summation and then

interchanging the order of integration and partial differentiation, we obtain

n+l n  o
Pr(E} f [n+1n (-a) n- l a f dy ym p (X,y) (C.7)

nsO f~ mf ax 0 x=a

The joint density of S and Z equals the product of the conditional density of Z

given S times the marginal density of S; Eq.(C.7) then yields

S n+ (-a)n-m+l
PrIE = (n+l)! L (

n=O mr1

an

axn p f(x) dy ym p2 lX(yls=x) . (c.8)ax n  3 0 ZJ(I=xza

Since the probability density of Z is symmetric about the origin, the remaining

integral is half the m-th conditional absolute moment of Z given S, that is,

<IzIm 1sx> a 2 f dy ym pZ13(ylsfx )  (C.9)

where < > represents expectation. After translating the index of summation, we

obtain the series expansion for Prig) about x equal to a:
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Pr(E 1 (-a) n.10 <)ztrns=x> I (c.10)
+ (-x p(x) xinamn=1 in-. an=1 mm IM a x x=a

For the case where a equals zero (Maclaurin series), the only contribution from

the inner series is for m equal to n. In this case, we have [Hanlon and

Gardner, 1979 and 1980]

PrEW Z S=X> (C.11)2 _1m~l a xn 3x=O

For the special case where S and Z are independent, the conditional absolute

moments of Z are just the absolute moments of Z and Eq.(C.1O) becomes

•Pr{E} = 2 n=1 (n-i)(a) = (-a) n-rn<Izm> (C.12)

Equation (C.11) becomes

Pr{EI = - W J- P.n( o) < Izl> . (C.13)
n=1

It should be noted that in Eq.(C.12) the average power of the interference,

i.e., <Z 2>, contributes to the second and higher terms of the series over n.

In Eq.(C.13), the average power of the interference contributes only to the

second term of the series. Since one would intuitively expect the probability

of error to be strongly dependent on the average power of the interference,

Eq.(C.13) would appear to be a more natural ordering likely to provide faster

convergence. Additionally, the derivatives of the intended signal's
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(n-l)
probability density, ps , is in general of simpler form when evaluated for a

equal to zero, as opposed to some other value of a. Similarly, Eq.(C.11) is

generally preferable to Eq.(C. 10).

As an example, the series expansion given by Eq.(C.13) is used to evaluate

the probability of error when S and Z are independent, S is a generalized

Rayleigh variate with distribution parameters (m1 , si, 01) where 2m1 is

restricted to be an integer, and IZI is a generalized Rayleigh variate with

parameters (m2 , B2, 02). From Eq.(B.8), it is readily shown that the even

derivatives of the density of S at the origin are zero and the odd derivatives

at the origin are nonzero only if the order of the derivatives is greater than

or equal to (2m -1). The derivatives are then (for n I mi1)

(2n-), n-m1  2 (Ml-l) 2
p5  (0) = (-1) C(2n)I/n!] (ml/al)n exp(-ml 1/l) Ln 1(mlB2/P1) (C.14)

The moments of IZI are given by Eq.(B.4) and the probability of error is

readily shown to be (Hanlon and Gardner, 19803

Pr{E} 2 exp(-ml 0/ 1 )  Z (_1) n (1m 2 nIml
2 11 1 n= n 2 /m2 2 1

L (m1-1) (m L 2- 1) 2

n n 1 1 n~m m2 2 /Q2) . (C.15)

This result is consistent with Eq.(B.11).
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APPENDIX D

CROSS-CORRELATION MOMENTS FOR RANDOM CODES

D.1. Moments f=IntegralOffset

The probability mass function for the code cross-correlation under the

condition of integral offset for binary symmetric random codes of length L (L

chips per data bit) is given by

-L-k L

2, k mod2 L mod2

Pr{c = k} (D.1)

0 otherwise.

It can be readily shown that the odd moments are zero and the even moments are

given by

<c 2n> =2LL L (2k -L) 2n= E2 - (D.2)

where E ( L ) is a generalized Euler number of order (-L). However, this form is

not very convenient since L can be very large. By using the binomial theorem

(Eq.(A.9)), Eq.(A.38), and the generating function for Stirling numbers of the

first kind (Eq.(A.32)), the even moments can be expressed as a polynomial of

degree n in the code length, i.e.,
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A Lm for n > 1 (D.3)

mil

where the coefficients (A m,n ) are given in terms of Stirling numbers of the

first (S1) and the second (S 2) kinds by the relation [Hanlon, Peterson, and

Gardner, 1980)

A 2n= k 2O 2k fn (-1)r Sl(2n-r-k,m-r) S2 (2n-r,2n-r-k) . (D.4)

Provided n is not too large, this expression readily generates the polynomial

coefficients. However, it is desirable to obtain closed-form expressions for

the coefficients of at least the higher-order powers of L, since for large

values of L (relative to n 2), the moments can be approximated very accurately

by one or two higher-order terms of the polynomial. To obtain the closed-form

expressions for the coefficients, we make use of the characteristic function

for the cross-correlation. By using the probability mass function, we have

<eO > - ( ej~~L (Cos W) (D.5)
k= k

By applying the moment theorem and Taylor's theorem to Eq.(D.5), we obtain for

the coefficients:

Am~n ('ln m~m "2n
A ()n 1 d 2 [log(cos W)]m (D.6)

m,n ml dwn_

By applying the series expansion for log(cos w) (Eq.(A.44)) and the result for

powers of series (Eq.(A.29)), we have
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A = (_)m+n (2n)! H (D.7)
mn mI n-mm

where

Ho'm 2 H kkm r=1 (rmk+r) Gr Hk-r,m (D.8)

Gr = (_I)r 2 2r+1 (2
2r+2 -1) B2r+2 / [(r+1)(2r 2)!] , (D.9)

and the B are Bernoulli numbers. For example, for the highest-ordern

coefficients we have

A = (2n)! / (n! 2 
n ) (2n-I)!! (D.1O)n,n

An-l, n =-n(n-1) A / 3 (D.11)

An_2, n  -(n-2)(5n+1) A nl,n / 30 (D.12)

2
For large values of L relative to n , the even moments are approximately given

by

<c2n> = (2n-1)!! L n [ - n(n-l)/3L] (D.13)

This expression is exact for the second and fourth moments. Table D.1 lists

the coefficients for the first five even moments.
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TABLE D. 1

COEFFICIENTS FOR POLYNOMIAL EXPRESSIONS OF CROSS-CORRELATION MOMENTS FOR RANDOM

2n n LmCODES UNDER INTEGRAL OFFSET, <c> Ml A, L
n=1 n

n A A A AAn n,n  An-l, n  An_2,n  An_3,n  An_4,n

1 1

2 3 -2

3 15 -30 16

4 105 -420 588 -272

5 945 -6300 16380 -18960 7936

D.2. Moments Jor ary Offset

The moments for an integral offset can be used to generate the moments for

an arbitrary offset. From Eq.(2.5), by taking the expectation over x, which is

uniform on the interval (0,1), while holding c0 and cI fixed, we obtain

I °
<,n 1.c c m acnm (D.14)<cn 0 ,c1> n+1 0 1

Since c0 and c 1 are independent for random codes and the odd moments of c are

zero, then the odd moments of 8 are zero and the even moments are given by
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2n 1 n2n-2m
2n+1 I<nM=O

1 E (-L E(L) (D.15)n+1 2m 2n-2mM=O

It is clear from Eq.(D.3) and Eq.(D.15) that the even moments of 8 are also

polynomials of degree n in the code length and can be expressed as

< > D L for n > . (D.16)

m=1 mn

By solving for the coefficients in terms of the Am,n, we obtain [Hanlon,

Peterson, and Gardner, 19803

1 n min(m,k)Dm,n = ;- I I A D.1A7k=O r=max(O,k-n+m) m-r,n-k

where we define AO,k 0k, that is, the Kronecker delta. For large values of

2
L relative to n , we can approximate the even moments by two terms of the

polynomial involving the highest-order powers of L, that is,

<82n> .(2n - 1)!. n n n (2n~ 1l~ - 2(.8
2n+l 2 {1 - [m2+(n-m)2-n]/3L. (D.18)

m-O

This expression is exact for the second and the fourth moments. Table D.2

lists the coefficients for the first five even moments. It should be noted

that the moments for arbitrary offsets differ significantly from those for

integral offsets.
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TABLE D.2

COEFFICIENTS FOR POLYNOMIAL EXPRESSIONS OF CROSS-CORRELATION MOMENTS FOR RANDOM

CODES, <8 2n>  Dm n Lm .
m~ri

Dn,n D n-l,n Dn-2,n Dn-3,n Dn-4,n

1 2/3

2 7/5 -4/5

3 36/7 -64/7 32/7

4 249/9 -912/9 1212/9 -544/9

5 2190/11 -13680/11 34152/11 -38528/11 15872/11
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